RDS-Decoder 2

Bedienungsanleitung

Sicherheitshinweise

- 1. Das Gerät ist nur mit der in den technischen Daten angegeben Versorgungsspannung zu betreiben.
- 2. Der Anschluss der RDS-Datenverbindung mittels Cinch-Kabel ist vor Inbetriebnahme herzustellen.
- 3. Das interne Modul dieses RDS-Decoders stellt weitere Funktionen bereit, die in der Grundausstattung dieses Gerätes nicht zur Anwendung kommen. Sollten diese genutzt werden, wird ein Eingriff in das Gerät nur von qualifizierten Personen empfohlen.
- 4. Vermeiden Sie in Verbindung mit dem Gerät Vibrationen, Stoßeinwirkungen, Temperaturen über +40°C, Nässe oder hohe Luftfeuchtigkeit.

Inbetriebnahme

Vor Inbetriebnahme benötigt das Gerät eine externe Stromversorgung mit 6V bis 8V DC und 600mA mit möglichst geringer Welligkeit (dieses ist optional erhältlich). Das Gerät ist mit einem Verpolungsschutz der Versorgungsspannung ausgestattet und vermeidet damit einen Defekt bei versehentlicher Verpolung.

Der RDS-Decoder benötigt zur Funktion ein UKW-Empfangsgerät. Die RDS-Daten (auch als MPX-Signal bezeichnet) werden dem Tonsignal aufmoduliert und können an geeigneter Stelle im Empfangsgerät abgegriffen werden. Mit einem Cinch-Kabel ist dann die Verbindung zum RDS-Decoder rückseitig herzustellen.

Es gibt auf dem Markt zahlreiche Geräte, die das RDS-Signal nach der Demodulation nicht vom Tonsignal entfernen (kein Pilottonfilter vorhanden). Hier kann das RDS-Signal z.B. bei einem UKW-Tuner direkt dem NF-Signal an der Cinch-Ausgangsbuchse abgegriffen werden.

Andere Empfangsgeräte haben einfache Filter mit einer geringen Dämpfung eingesetzt, die das RDS-Signal nicht vollständig eliminieren. In diesem Fall kann das RDS-Signal unter Umständen noch teilweise bei starken Rundfunksendern vom Decoder verarbeitet werden. Das kann relativ einfach am Anschluss an "LINE OUT" oder z.B. an der Kopfhörerbuchse ausprobiert werden. Werden hier die RDS-Daten nur mangelhaft empfangen oder zeigt der Decoder keine RDS-Daten an, muss generell am Empfangsgerät ein Eingriff vorgenommen werden. Das RDS-Signal ist dann mittels eines abgeschirmten Kabels (z.B. 3mm Coax-Kabel) zwischen Demodulator und Stereodecoder mit dem Innenleiter des Kabels abzugreifen, wobei die Abschirmung an einem Massepunkt in der Nähe des Abgriffs gelötet werden sollte und das andere Ende des Kabels zur Rückwand geführt wird, um es an eine einzubauende isolierte Cinch-Buchse zu löten. Damit kann jetzt von außen ein abgeschirmtes Cinch-Kabel angeschlossen und entsprechend dem RDS-Modul zugeführt werden (siehe Anschlussplan unter "*Downloads*" auf der Seite *http://haraldkliem.jimdo.com*). Der hierzu notwendige technische Eingriff sollte durch eine fachlich qualifizierte Person durchgeführt werden.

Die Verbindung zwischen Tuner/Receiver und RDS-Decoder über das Verbindungskabel (Cinch) ist in <u>spannungslosem</u> Zustand des RDS-Decoders herzustellen oder zu trennen. Wird der Decoder in eingeschaltetem Zustand mit dem Empfangsgerät verbunden, kann es zu einer Fehlfunktion kommen, die den Decoder-Controller blockiert. In diesem Fall ist das Gerät noch einmal kurz aus- und wieder einzuschalten. Nach Herstellung der Verbindung des RDS-Signals und Anschluss der Versorgung ist das Gerät betriebsbereit. Nach dem Einschalten erscheint "Kein RDS", wenn kein RDS-Signal empfangen wird oder die RDS-Datenverbindung unterbrochen ist.

Bei Verwendung eines eigenen Steckernetzteiles ist zu beachten, dass je nach Höhe der Versorgungsspannung Wärme am Spannungsregler entsteht, die abgeführt werden muss. Daher sollte die Versorgungsspannung 6 bis 8V DC mit 400mA betragen.

Funktionsbeschreibung

Das vierzeilige Display zeigt folgende RDS-Daten an:

- 1. Zeile
- Stationsname/Regionalkenner (die ersten 8 Zeichen)
- Uhrzeit (wird mit den RDS-Daten jede volle Minute aktualisiert)
- Kennzeichnung, wann Verkehrsinfos (Wechsel von "-" auf "*") gesendet werden

2. Zeile

- Durchlaufender aktiver Informationstext über die gesamte Zeile (auch beim Display mit 2x16 Zeichen, wenn kein Programmtyp ausgestrahlt wird, sonst rechts über 7 Zeichen Darstellung des Programmtyps)
- 3. Zeile (nur beim Display 4x16 Zeichen)
- Programmtyp über die gesamte Zeile mit 16 Zeichen; bei Nichtausstrahlung durch die Radiostation ist die Einblendung eines "Wunschtextes" wie z.B. "Radio von Carmen" möglich, dies ist jedoch bei der Bestellung des Moduls (siehe Liste RDS-Programmtypen unter "Downloads" auf *http://haraldkliem.jimdo.com*)
- Der Programmtyp wird während einer Verkehrsmeldung durch die Anzeige "Verkehrsinfo" (bei einem zweizeiligen Display "Verkehr" in der 2. Zeile) ersetzt
- 4. Zeile (nur beim Display 4x16 Zeichen)
- durchlaufende Anzeige der Alternativfrequenzen in Zweiergruppen
- Kennung, ob es sich um einen Lokal-, Regionalsender oder um einen Sender handelt, der bundeslandweit oder national abgestrahlt wird (Version "A" der Controllerprogrammierung) oder auf Wunsch kann anstelle des PI-Regionalcodes mit einer geänderten Software der Programmidentifikationscode im Hex-Format dargestellt werden (Version "C" der Controllerprogrammierung)
- in der DX-Version (Version "D" der Controllerprogrammierung) entfällt die Alternativfrequenzanzeige; es wird links ein Zählerdatenspeicher der gesammelten Programmidentfikationscodes im Durchlauf dargestellt, wobei rechts stets der aktuelle Programmidentfikationscode im Hex-Format angezeigt wird

Ohne die Herstellung der RDS-Verbindung zum Tuner/Receiver erscheint auf dem Display "Kein RDS". Wird das Gerät über ein RDS-Kabel mit dem Tuner/Receiver verbunden, erscheinen sofort gruppenweise die vom Sender abgestrahlten RDS-Daten auf dem Display.

Die Uhrzeit in der 1. Zeile wird zur vollen Minute aktualisiert. Daher kann es unter Umständen 59 Sekunden dauern bis die Uhrzeit auf dem Display erscheint (vorausgesetzt, es wird das Uhrzeittelegramm in den RDS-Daten des Senders übertragen). Wird nun, nachdem einmal die Uhrzeit empfangen wurde, ein Sender eingestellt, der das Zeittelegramm nicht sendet, läuft die Uhr dennoch eigenständig, ohne Synchronisation, weiter. Dann sind nach einer Laufzeit von 24 Std. und mehr jedoch Ungenauigkeiten von einigen Sekunden pro Tag möglich.

Wichtig für die fehlerfreie Funktion ist ein gutes Antennensignal. Ein schlechtes Antennensignal führt unweigerlich zum Informationsverlust in der Anzeige bzw. zur Darstellung "Kein RDS".

Bei einem Senderwechsel von einer empfangsstarken auf eine empfangsschwache Station läuft eine kurze Zeit der bereits gespeicherte RDS-Text der empfangsstarken Station weiter, bevor "Kein RDS" angezeigt wird. Dies stellt keine Fehlfunktion dar, sondern entspricht dem Algorithmus des RDS-Decoders. Genau in dieser Zeit von ca. 10 Sekunden versucht die Software auch nur Bruchteile an RDS-Daten zu sammeln, um sie dann darstellen zu können (interessant für UKW-DX). Andernfalls würden ständig im Wechsel "Kein RDS" und/oder RDS-Datenfragmente anzeigt werden.

Wird die PI-Regionalkennung (in jedem RDS-Telegramm enthalten und in der 4. Zeile rechts unten in Klartext dargestellt) empfangen, wird die Anzeige gelöscht und die eingehenden Information werden dargestellt. Bei sehr schwachen Sendern kann es einige Sekunden in Anspruch nehmen bevor sämtliche Informationen im Display abgebildet werden. Danach können die RDS-Daten bis zu 10 Sekunden komplett ausfallen, ohne dass die Anzeige gelöscht wird. Der 64 Zeichen lange, zwischengespeicherte Radiotext läuft in dieser Zeit ebenso weiter.

AF Alternativfrequenzanzeige mittels einer zusätzlichen LED (nur im Display mit 4x16 Zeichen)

Diese Funktion wurde in der Geräteausführung nicht realisiert. Das RDS-Modul bietet jedoch diese Funktionen bei entsprechender Verdrahtung.

Die angezeigten Zweiergruppen der Alternativfrequenzen (dies können mehrere Frequenzlisten sein) in der 4. Zeile werden den gesendeten Datenpaketen entnommen und in kurzen Zeitabständen fortlaufend angezeigt. Eine Systematik in der Darstellung gibt es nicht. Es kann sich um eine Vielzahl von alternativen Frequenzen handeln, die im Ausstrahlungsgebiet zu empfangen sind. Empfangsgeräte in PKW sind in der Lage diese Frequenzlisten zu durchsuchen, die lokale Feldstärke und den PI-Code dieser Alternativfrequenzen zu prüfen, um letztlich auf eine Alternativfrequenz umzuschalten, wenn die Feldstärke der gegenwärtig eingestellten Station zu schwach wird.

Welche AF's (Alternativfrequenzen) werden nun im *RDS-Decoder 2* in der 4. Zeile dargestellt? Die Software sucht zuerst die Liste mit den zahlreichsten AF's. Das erfordert etwas Zeit und in Zeile 4 läuft bis zur Ermittlung aller Daten ein Zähler rückwärts. Stoppt der Zähler, wartet die Software auf die nun folgende längste Liste, wählt sich die ersten 6 AF's aus. Zwei davon werden in Zeile 4 dargestellt, 4 AF's stehen im Speicher. Nach 5 Sekunden werden zwei aus dem Speicher geladen und in Zeile 4 dargestellt. Im Speicher werden diese beiden gelöscht und mit "frischen" AF's aus dem RDS-Datenstrom aufgefüllt. Das geschieht im Hintergrund, für den Anwender unbemerkt. Das Programm stellt sicher, dass die 4 AF's im Speicher stets unterschiedlich sind. Es ist allerdings durchaus möglich, dass z.B. in Zeile 4 links eine 90,6 MHz steht und beim nächsten Wechsel in Zeile 4 rechts auch eine 90,6 MHz. Die Erklärung: Der Rundfunksender übermittelt nur wenige AF's. Werden keine AF's oder nur eine AF angezeigt, existieren auch keine weiteren AF's.

Welchen Nutzen haben die AF's für den Anwender des RDS-Decoders? In den meisten PKW – Empfangsgeräten erfolgt die Alternativfrequenzsuche unbemerkt im Hintergrund. Verlässt der Fahrer den Empfangsbereich einer Sendestation, sucht die geräteinterne Software die gleiche Station auf einer anderen Frequenz - die Alternativfrequenz. Genau diese Funktion ist jetzt manuell, mittels langsamer Suche am Tuner/Receiver und Unterstützung des RDS-Decoders ebenso möglich. Damit ist die AF-Funktion hilfreich, um von einem leicht verrauschten Sender auf einen gleichen, weniger verrauschten Sender zu wechseln.

Gestartet wird die AF-Suche, indem ein gewünschter RDS-Sender eingestellt wird, von dem eine AF ermittelt werden soll. Wird der AF-Taster 2 Sekunden lang betätigt, ist die AF-Suche "scharf" (aktiviert), die LED leuchtet. Wird die Sendersuche nicht gestartet, erlischt die LED nach ca. 5 Sekunden. Die AF-Suche kann nach 5 Sekunden erneut gestartet werden. Die AF-Suche bleibt bei laufender Abstimmung am Tuner/Receiver für ca. 2 Minuten aktiviert und wird automatisch mit 3x Blinken deaktiviert. Wurde in dieser Zeit keine AF gefunden und dabei das gesamte UKW-Band abgesucht, ist am Standort keine AF vorhanden. Ist eine AF vorhanden, wird dies sofort mit dem einfachen Erlöschen der AF-LED quittiert. Die AF-Suche kann jederzeit mit erneutem Betätigen des Tasters für 2 Sekunden während der aktivierten AF-Suche wieder deaktiviert werden.

PS-Stationskennung

Zur Identifikation der Rundfunkstation wird die Stationskennung dargestellt (in der 1. Zeile links beim *RDS-Decoder 2*). Wird von der Rundfunkstation keine Kennung ausgegeben oder werden keine RDS-Daten empfangen, dann erscheint an dieser Stelle "Kein RDS".

CT-Anzeige

Sie bezeichnet die im RDS-Telegramm enthaltene Uhrzeit und wird in der 1. Zeile nach der *PS*-Stationskennung angezeigt. Die Uhrzeit wird erstmals angezeigt, sobald ein Minutenwechsel erfolgt. Dies können demzufolge maximal 59 Sekunden sein. Voraussetzung dafür ist das vom Sender abgestrahlte Zeittelegramm (nicht jeder Radiosender überträgt die Uhrzeit), sowie gültig decodierte RDS-Daten (ausreichendes Antennensignal).

PI-Anzeige (keine Anzeige mit dem Display 2x16 Zeichen)

Sie ermöglicht die Zuordnung zu den einzelnen Staaten (wird nicht mit dem *RDS-Decoder 2* angezeigt) und zu der Region innerhalb eines Landes (wird mit dem *RDS-Decoder 2* angezeigt) Folgende Kennungen werden vom *RDS-Decoder 2* rechts in der 4. Zeile dargestellt:

- Lok. Lokalsender
- *Nat.* Aussendung deutschlandweit
- *Land* Aussendung im jeweiligen Bundesland
- *Reg.* Aussendung regional, in einem Teil eines Bundeslandes

Außerdem enthält die PI-Datengruppe die vierstellige Programmreferenznummer als Hexadezimalcode (wird nicht mit dem *RDS-Decoder 2* angezeigt).

PTY- Programmtyp (in der 2. Zeile links in verkürzter Form beim Display 2x16 Zeichen)

Hiermit können die 32 möglichen Programmtypen angezeigt werden, wobei der Programmtyp "0" beim *RDS-Decoder 2* für einen Wunschtext genutzt werden kann. Ohne Wunschtext erfolgt bei diesem Programmtyp die Anzeige "Kein Programmtyp" im vierzeiligen Display (bei der früheren Softwareversion auch "Wunschtext"). Das zweizeilige Display blendet hier über die gesamte Zeile dann den Radiotext ein. Eine genaue Liste der angezeigten RDS-Programmtypen beim *RDS-Decoder 2* ist unter "*Downloads*" auf <u>http://haraldkliem.jimdo.com</u> verfügbar.

PWR-Anzeige über eine zusätzliche LED

Diese Funktion wurde in der Geräteausführung nicht realisiert. Das RDS-Modul bietet jedoch diese Funktionen bei entsprechender Verdrahtung.

Der Anschluss PWR-LED dient zur Kontrolle der Versorgungsspannung und kann mittels einer Brücke auf der Platine zusammen mit der Hintergrundbeleuchtung des Displays abgeschaltet werden. Diese Funktion kann z.B. zur Umschaltung von FM auf AM/AUX genutzt werden (Details, siehe Anschlussplan unter "*Downloads*"). Ist die blinkende "RDS-Anzeige" (QUAL-Anzeige) unerwünscht, kann intern diese LED umgesteckt und dafür die PWR-Anzeige genutzt werden (siehe Anschlussplan).

QUAL-Anzeige des RDS-Signals über eine zusätzliche LED

Nicht zu unterschätzen ist die Funktion der RDS-Qualitätsanzeige mittels einer zusätzlichen LED. Mittels dieser LED-Anzeige kann man die Empfangsstation auf optimalen RDS-Pegel einstellen. Dies gelingt, indem die Empfangsstation auf niedrigste Blinkfrequenz mittels Abstimmknopf am Tuner/Receiver eingestellt wird. Ein optimaler RDS-Empfang bedeutet <u>kein</u> leuchten der QUAL-LED. **In der Geräteausführung ist dies frontseitig realisiert.**

DX-Version (Controller-Programmierung "D")

Der Programmidentifikationscode kann auf Wunsch bereits anstelle des Regionalcodes angezeigt werden. Um den Decoder noch komfortabler speziell für UKW-DX nutzbar zu machen, wurde die vierte Zeile verändert. Wie auf dem Bild unten zu sehen ist, verbleibt nur der aktuelle PI-Code im Hex-Format rechts an gleicher Stelle (C).

Verzichtet wird bei der DX-Version auf die Alternativfrequenzanzeige. Dafür startet mit dem Einschalten des RDS-Decoders ein Zähler (B), der beim Abstimmen jede neue Rundfunkstation einmal zählt. Von 87,5MHz bis 108MHz kann damit auf einfache Weise die Anzahl der verschiedenen Stationen ermittelt werden. Die maximale Anzahl kann momentan 99 PI-Codes betragen. Mit dem Ausschalten wird der Zählerdatenspeicher wieder gelöscht. Nach dem erneuten Einschalten beginnt der Zähler wieder von "0" zu zählen.

In der 4. Zeile links erfolgt die Darstellung des PI-Codedatenspeichers (A). Wird im Zähler bereits die zweite Station gezählt und der 2. Sender bleibt eingestellt, beginnt hier der Durchlauf der gezählten Stationen nach ca. 4-5 Sekunden. Noch einmal 4-5 Sekunden vergehen, bevor der angezeigte PI-Code links im Display wieder wechselt. Das müsste zum Notieren ausreichen. Ist dies zu schnell, kann ein Stopp des Durchlaufs erreicht werden, indem einfach nur auf "Rauschen" abgestimmt wird (kein Empfang von RDS-Daten). Beim nächsten Hineindrehen/Abstimmen auf eine Station wird der Durchlauf fortgesetzt. Somit lassen sich auf sehr einfache Weise die verschiedenen PI-Codes sammeln, anzeigen und bei Bedarf notieren.

Anschlüsse an Steckerleiste X3 (siehe Anschlussplan):

Zur Information für eventuelle Erweiterungen:

An dieser Steckerleiste können u.a. die oben aufgeführten LED üblicher Bauart direkt angeschlossen werden. Die Polarität ist dem Anschlussplan zu entnehmen.

Bei Bedarf kann auch der Sekundenimpuls mit einer Länge von 0,6ms (5V-Pegel) am Pin 5/12 abgegriffen werden.

An Pin1,2/16,15 stehen die RDS-Daten (RDDA/RDCL) für einen möglichen PC-Anschluss zur Verfügung (5V-Pegel, nicht galvanisch getrennt).

Der Taster (Schließer) zur AF-Suche ist an Pin 4/13 anzuschließen.

Über Pin 8/9 erfolgt die Umschaltung FM/AM oder AUX. Im Auslieferungszustand sind diese Pins mit einer Steckbrücke versehen (FM dauerhaft ON).

Die detaillierten Konfigurationen des RDS-Decoders sind dem Anschlussplan zu entnehmen.

Information zu den verwendeten Displays

Für den Decoder werden Displays der unterschiedlichsten Hersteller verwendet, die gerade für Endverbraucher verfügbar sind. Das trifft auch auf die von mir verwendeten Displays zu. Ein Nebeneffekt davon ist, dass sich diese nicht so kompatibel verhalten wie angegeben. Daher kann es vorkommen, dass gelegentlich ominöse Schriftzeichen im Radiotext erscheinen. Die Fehleranalyse macht aufgrund der vielen Displayhersteller aus meiner Sicht wenig Sinn, da sie für jeden Typ einzeln durchgeführt werden müßte. Das übersteigt zumindest meine Hobbyleidenschaft und ist aufgrund des gelegentlichen Erscheinens zu verschmerzen. Ich bitte daher um Verständnis.

Technische Änderungen vorbehalten.

Technische Daten:

Spannungsversorgung:	6V bis 8V DC (mit entsprechenden Widerständen R1 und R2 auch bis 12V – bitte für Kühlung am Spannungsregler D1 sorgen)	
Stromaufnahme:	ca. 130mA mit blau-weißem Display, 4x16 Zeichen und LED- Hintergrundbeleuchtung (mit blau-weißem Display 2x16 Zeichen ca. 90mA) bei 6V DC	
Gehäuseabmessungen ohne mit Display 4x16 Zeichen mit Display 2x16 Zeichen	e Gerätefüße, Displayrahmen u B=105,5mm, H=85mm, T=10 B=105,5mm, H=59mm, T=10	und Anschlussverbinder: 4mm 4mm
Betriebstemperaturbereich:	+10+40℃	
Gewicht:	mit Display 4x16 Zeichen mit Display 2x16 Zeichen	ca. 530g ca. 450g

Änderungen hierzu entnehmen Sie bitte dem Internet auf http://haraldkliem.jimdo.com.